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Abstract
Dual-functionality Au-on-Ag nanostructures (AOA) were fabricated on a silicon substrate by
first immobilizing citrate-reduced Ag nanoparticles (Ag NPs, ∼43 nm in diameter), followed by
depositing ∼7 nm Au nanofilms (Au NFs) via thermal evaporation. Au NFs were introduced for
their catalytic activity in concave-convex nano-configuration. Ag NPs underneath were used for
their significant enhancement factor (EF) in surface-enhanced Raman scattering (SERS)-based
measurements of analytes of interest. Rhodamine 6G (R6G) was utilized as the Raman-probe to
evaluate the SERS sensitivity of AOA. The SERS EF of AOA is ∼37 times than that of Au NPs.
Using reduction of 4-nitrothiophenol (4-NTP) by sodium borohydride (NaBH4) as a model
reaction, we demonstrated the robust catalytic activity of AOA as well as its capacity to
continuously monitor via SERS the disappearance of reactant 4-NTP, emergence and
disappearance of intermediate 4,4′-DMAB, and the appearance of product 4-ATP throughout the
reduction process in real-time and in situ.

Supplementary material for this article is available online

Keywords: Au-on-Ag nanostructure, thermal evaporation deposition, catalytic reaction, surface-
enhanced Raman spectrum

(Some figures may appear in colour only in the online journal)

1. Introduction

Plasmonic metal nanostructures exhibit a multitude of fasci-
nating and unique properties that have enabled their
exploration for diverse applications such as catalysis [1–4],
sensing [5–7], and photodynamic therapy [8]. The plasmonic
responses depend strongly on the type, size, configuration,
and surrounding environment of the metal nanostructures
[9–12]. There is a growing interest in hybrid metal-metal
nanostructures to take full advantage of the distinct properties
of the constituent metal phases for their synergistic effect
[13]. For example, bimetal core–shell or core-satellite struc-
tures can produce superior chemical and physical

functionalities for the investigation of nanophotonics and
catalysis [14–17].

Among many bimetal nanostructures, Ag–Au composites
with different structural configurations have been proposed,
especially for SERS-based sensing [18, 19], such as Ag/Au
nanowires [20], Ag–Au alloy [9], Ag–Au cuboctahedra [21]
and Ag–Au concave nanocrystal [22]. SERS utilizes the
localized surface plasmon resonance (LSPR) of plasmonic
nanostructures induced by laser irradiation to achieve multiple
orders of magnitude enhancement of Raman scattering for
detection and measurements of target analytes at concentra-
tions as low as single molecules [23]. While the EF of Ag
nanostructure is typically two orders of magnitude higher than
its Au counterpart [24], its susceptibility to environmental
degradation such as oxidation is the main drawback. In
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contrast, Au is well known for its chemical stability, bio-
compatibility and catalytic activity [16, 25, 26]. Ag core/Au
shell nanostructures have thus been broadly investigated,
including the use of such structures for SERS-based mea-
surements of catalytic reactions.

One common approach to fabricate the Ag/Au core–
shell nanostructure is to deposit Au atoms on Ag NPs through
seeded growth via solution chemistry [27, 28]. Seeded growth
has emerged as a common route to the synthesis of nano-
crystals of many noble metals, such as Ag [29], Au [30], Pd
[31] and Pt [32]. Though remarkably robust, the capability of
seeded growth is restricted to metals that will not undergo
galvanic replacement between them[16]. It is well docu-
mented that galvanic reaction occurs spontaneously and
instantaneously when Ag NPs are mixed with HAuCl4 in an
aqueous solution [33–35]. It can be challenging to fabricate
Ag/Au core/shell nanostructures free of pores due to gal-
vanic replacement using the solution route [36].

Here, we report a facile method to produce the dense Au
shell onto Ag NPs through thermal evaporation deposition
(TED), which is not readily achievable via solution-based
galvanic replacement reaction. The resultant AOA nanos-
tructure is chemically stable and highly SERS- and catalytic-
active by virtue of the 7 nm thin Au coating on Ag. Using
Rhodamine 6G (R6G) as a model analyte, we demonstrated
that the SERS EF of the AOA nanostructure is ∼37 fold as
large as that of Au NPs. Furthermore, the dual functionality of
our AOA nanostructure, i.e., SERS activity of Ag NPs and the
catalytic effect of the deposited Au, enabled sensitive in situ
measurements of the reduction of 4-NTP by NaBH4 to form
4-ATP in real-time.

2. Experiment section

2.1. Materials

Sodium borohydride (NaBH4, 99%), ethanol (anhydrous,
99.8%), poly(allylamine hydrochloride) (PAH, Mw = 15000),
sodium hydroxide (0.1 M NaOH standard solution, volu-
metric), 4-nitrothiophenol (4-NTP, 80%) and Rhodamine 6G
(R6G) were purchased from Sigma-Aldrich. Sodium citrate
trihydrate (C6H5Na3O7 · 3H2O) and hydrogen peroxide (H2O2,
30 wt% in water) were procured from Fisher Scientific. Silver
nitrate (ultrapure, grade) was purchased from Across. Gold
nanoparticles (Au NPs, 50 nm, in citrate solution) were

purchased from Nanocomposix. Milli-Q ultrapure water (no
less than 18.2 MΩ) was used in the synthesis.

2.2. Synthesis of Ag NPs

Ag NPs were synthesized by a refined Lee and Meisel method
[37] with the incorporation of UV irradiation. Details of
which could be found elsewhere [38]. Briefly, 1 wt% aqueous
sodium citrate (0.8 ml) was added to AgNO3 solution (1 mM,
40 ml), drop by drop. The mixture was placed under a UV
lamp (UV Flood Curing System, Cure Zone 2 (CONTROL-
CURE, Chicago, IL)) for 4 h with gentle stirring.

2.3. Preparation of AOA nanostructure

Monodispersed Ag NPs were immobilized on a silicon sub-
strate (with a native oxide layer), as shown in figure 1. The
immobilization steps are as follows. The substrate was pre-
coated by poly(allylamine hydrochloride) (PAH) polymer to
minimize the agglomeration of metal nanoparticles. PAH was
first dissolved in purified water filtered with Barnstead ion-
exchange columns and further purified by passing through
Millipore (Milli-Q) columns. The pH of the PAH aqueous
solution was adjusted to 9, modified by sodium hydroxide
(0.1 M NaOH standard solution). The substrate was exposed
to the PAH aqueous solution for 30 min, then rinsed with
Milli-Q water to remove any free or loosely bound PAH
molecules [1]. Next, Ag NPs colloidal solutions were added
dropwise 40 μl onto the PAH-covered silicon substrate, kept
in the petri dish for 2 h and then rinsed with Milli-Q water to
remove free and loosely bound Ag NPs. Substrates with
immobilized Ag NPs were coated with 7 nm Au film from a
heated Au source in a thermal evaporator (Angstrom Engi-
neering, Ontario, Canada) [39, 40]. Briefly, the silicon sub-
strate was held under high vacuum and exposed to gold
vapor. The deposition speed was 0.03 nm s−1 with rotation
speed of 30 rpm to ensure uniform deposition. The resultant
AOA nanostructures supported on a silicon substrate were
stored under sealed conditions filled with Argon gas before
further use.

2.4. Sample preparation for in situ SERS monitoring of catalytic
reactions

The AOA nanostructure supported on silicon substrate was
immersed in 2 ml of 10 mM 4-NTP ethanol solution prefilled
in a suspension culture plate. To facilitate the formation of a

Figure 1. Schematic of the steps in AOA nanostructure fabrication.
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self-assembled 4-NTP monolayer on the Au surface of AOA,
the immersion was sealed and kept under inert gas ambient
for 12 h. The AOA nanostructure with adsorbed 4-NTP was
subsequently rinsed twice with Milli-Q water before the
initiation of catalytic reaction while simultaneously being
monitored by a Raman spectrometer. Au-catalyzed 4-NTP
reduction was initiated by adding 100 μl of 5.28×10−2 M
NaBH4 solution on the AOA nanostructure with absorbed
4-NTP monolayer at room temperature. The time-resolved
reaction process was monitored in situ by SERS.

2.5. Characterization

The Ag NPs and AOA nanostructures prepared were exten-
sively characterized. Scanning electron microscope (SEM)
images were obtained by ZEISS AURIGA at 5 kV with a
working distance of 7.5 mm. SEM image analysis was per-
formed using ImageJ software from the National Institutes of
Health. Atomic force microscopy (AFM) was conducted with
MultiView 2000TM. Transmission electron microscope
(TEM) images were obtained by FEI Titan Themis 200 at an
acceleration voltage of 200 kV [41]. UV–visible absorption
spectra were collected by a UV–vis spectrometer (synergy HT
multidetection microplate reader, BioTek Instruments, Inc.,
Winooski, VT) [8].

Raman measurements were performed using a custom-
built setup [1]. A 632.8 nm laser beam was spatially filtered
and reflected from a Chroma 540DCLP dichroic mirror and
excited the back aperture of a Thorlabs 20×0.55 N.A.
objective. The excitation laser intensity in front of the
objective was ∼8 mW. The well-sealed sample cell was
placed on a Newport ULTRAlign 561D translation stage on
an RS 3000 sealed hole tabletop with tuned damping to
prevent undesirable oscillations. The Raman signal from the
objective passed through the dichroic mirror. A collimator
was used to focus the signal into a spectroscopic grade
multimode fiber (400 μm core, Newport). A fiber-coupled
Acton SpectraPro 2300 spectrometer with a Roper Scientific
liquid nitrogen cooled CCD detector was used in spectral
acquisition at a resolution of 2 cm−1. All Raman measure-
ments were performed using an acquisition time of 20 s
(exposure time of 2 s×10 integral exposures). A silicon
wafer was used under 632.8 nm wavelength laser to calibrate
the system before the measurement. After chemical reagents
were introduced into the sample cell, the laser focus was
adjusted to be on the AOA surface where reduction reaction
takes place. Raman spectra were used as collected with
background subtraction. All measurements were repeated
three times.

3. Results and discussion

3.1. Structural characterization

As described in the previous experimental section, Ag NPs
were prepared by wet chemical synthesis and Au coatings
were deposited by TED. Figure 2(a) shows the SEM image of

Ag NPs as synthesized; the diameter of Ag NPs is 43±
6 nm. The surface coverage density of Ag NPs is 163±16
particles μm−2 on a silicon substrate. Figure S1(a) (available
online at stacks.iop.org/NANO/33/155701/mmedia) shows
the TEM image of Ag NPs. The SEM image of Au film is
shown in figure 2(b). The dark region to the left represents the
surface of a bare substrate, created by parts of the Au film
with a tweezer prior to measuring its thickness by AFM; the
right bright region is the Au film. Figure S1(b) shows the
TEM image of Au film; dark regions represent the Au island,
which is also observed in the right side of figure 2(b).
Figure 2(c) is a 2D-AFM image of the scratched Au film. The
line scanning profiling over the 2D-AFM image suggests a
Au film 7 nm thick (figure 2(d)). A 3D-AFM image further
reviews the surface topography of Au film, shown in
figure 2(e).

SEM and TEM images of AOA nanostructure are shown
in figure 3(a) and S1(c)–(d), respectively. Figure S1(d) is a
zoom in image of figure S1(c), demonstrated the Ag/Au
core/shell nanostructure. The diameter of AOA structure is
52.04±8.64 nm. SEM-energy dispersive X-ray (SEM-EDX)
elemental mappings of Ag (blue), Au (yellow) and Ag/Au
composition are shown in figures 3(b)–(d) respectively. EDX
analysis provides the constituent Ag and Au elements in AOA
(figure 3(e)). Besides, the UV–vis absorption spectra (figure
S2) also demonstrated the characteristics of AOA and Ag NP
nanostructures on Si substrate or in colloidal solution (in the
case of Ag NPs).

To demonstrate the chemical stability of AOA nanos-
tructures, we submerged both AOA on silicon and Ag NPs
immobilized on silicon in 30 wt% H2O2 solutions for 30 min.
Figure 4(a) shows the SEM image of Ag NPs after the H2O2

treatment. The inset is the image of the initial Ag NPs. Ag
NPs have been completely dissolved in H2O2, consistent with
documented studies [42]. Figure 4(b) depicts the SEM image
of AOA after the same H2O2 treatment. The inset is the SEM
image of the initial AOA. There is no apparent change in the
structure of AOA and the coverage density of the underlying
Ag NPs before and after the treatment, solid evidence of the
chemical inertness of the Au thin film. The fact that Ag NPs
were well-preserved is a strong indication of the dense quality
of the Au coating by TED.

3.2. SERS measurement

To characterize the SERS activity of AOA nanostructures, we
used R6G as a model analyte. Shown in figure 5 are Raman
spectra of 10−6 M R6G obtained using an as-received silicon
substrate, as-received Au NPs and AOA nanostructure (both
of which are on silicon support). R6G typically exhibits
vibrational modes at 1185 cm−1, 1315 cm−1, 1363 cm−1 and
1512 cm−1, which can be assigned to the aromatic C–C
stretching vibrations of R6G molecules [43]. No apparent
R6G peaks were detected except at 520 cm−1 and 940 cm−1

associated with silicon, indicating the inability of regular
Raman spectroscopy to detect 10−6 M R6G in the absence of
plasmonic nanostructure. In contrast, Au NPs immobilized on
silicon substrate yielded appreciable R6G Raman peaks (blue
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line) at 1185 cm−1, 1315 cm−1, 1363 cm−1 and 1512 cm−1

due to the SERS activity of Au NPs. However, AOA pro-
duced the most striking signal enhancement with high
intensities at the peaks characteristics of R6G, a clear sign of
its robust SERS activity.

To evaluate the respective EFs of the Au NPs and AOA
nanostructure, the intensities are normalized for the laser
power with the collection conditions—acquisition time and
detector sensitivity—remaining the same. We used the nor-
malized 520 cm−1 Si peak as an internal standard for the
subsequent EF calculations. The EFs were calculated for R6G
molecules using the 1363 cm−1 peak according to the
equation below [44]:

=
I C

I C
EF , 1SERS SERS

NR NR
( )

where ISERS and CSERS are the Raman intensity and the
concentration of R6G solution used in SERS measurement;
INR and CNR are the Raman intensity and the concentration of
R6G solution used in routine Raman measurements. This
analytical method provides a simple approach to comparing
the SERS effect of different substrates without making spe-
cific assumptions of the surface densities of SERS-active sites
and the surface density of adsorbed molecules [45]. The
calculated EFs are 579, 2,1392 and 106,839, respectively, for
Au NPs and AOA as well as Ag NPs (the SERS spectra are

Figure 2. The SEM image of (a) Ag NPs (the inset is a statistical histogram of the diameter distribution of Ag NPs on a silicon substrate) and
(b) Au film. (c) 2D-AFM image of Au film. (d) Line scanning profiling of 2D-AFM of Au film. (e) 3D-AFM image of Au film.

Figure 3. (a) The SEM image of AOA nanostructure. SEM-energy
dispersive X-ray (SEM-EDX) elemental mapping of (b) Ag NPs, (c)
Au film and (d) AOA. (e) EDX analysis of AOA.
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shown in figure S3). Although the EF of AOA is not as high
as that of Ag NPs, which is not surprising, the 37-fold
increase over Au NPs in EF makes AOA a far more pro-
mising platform for sensitive SERS measurements while
taking advantage of the catalytic effort of Au. As shown in
table S1, our AOA nanostructure has SERS activity com-
parable to other Ag/Au composites.

3.3. In-situ SERS monitoring of catalytic reactions

The SERS activity of AOA allows for synergistic SERS-
based monitoring of catalytic reactions should the Au thin
film exhibit catalytic property. To demonstrate the potential of
AOA in this regard, we chose as a model system the reduction
of aromatic nitro compounds (R-NO2) to aniline derivative
(R-NH2) by NaBH4 in the presence of Au catalyst at room
temperature, as shown in figure 6, given their significance for
the environment and the synthesis of fine chemicals [9,
20–22].

AOA nanostructures with pre-adsorbed 4-NTP layer
prepared as previously described were used for catalytic
investigation. There are two possible pathways for 4-NTP
reduction [46, 47], shown in figure S4. In this study, the
4-NTP layer underwent a two-step (red pathway), Au-cata-
lyzed reduction process upon the introduction of NaBH4 at
room temperature. NaBH4 reacts with water on the surface of
nanocatalyst (AOA) and thus to produce hydrogen and an
oxidized form of borohydride. The 4-NTP molecule gets
reduced subsequently by the adsorbed oxidized NaBH4 spe-
cies to 4,4′-dimercapto-azobenzene (4,4′-DMAB). Due to the
chemical instability of 4,4′-DMAB, it will continue to react
until it is exhausted [48]. The final product was 4-ATP. As
shown in figure 7, the SERS spectra of 4-NTP exhibited four
characteristic vibrational bands at 856 cm−1, 1112 cm−1,
1347 cm−1 and 1571 cm−1, corresponding to C–H wagging,
C–S stretching, O–N–O stretching, and phenyl ring modes,
respectively [45]. The SERS signal of 4-NTP remained
unchanged in the first minute or so of the initiation of the
reduction reaction. It is possible that active hydrogen species
are formed at this time upon adsorption of borohydride ions

Figure 4. SEM image of Ag NPs after immersion in H2O2 solution
for 30 min. The inset is an SEM image of as-prepared Ag NPs. (b)
SEM image of AOA after identical H2O2 treatment. The inset is an
SEM image of as-prepared AOA.

Figure 5. SERS spectra of 10−6 M R6G using an as-received silicon
substrate, Au NPs and AOA. Inset (a) is the SEM image of AOA and
inset (b) is the SEM image of Au NPs, scale bar is 200 nm. Each
measurement was repeated three times.

Figure 6. Schematic of a tentative mechanism of the Au-catalyzed
reduction from surface-adsorbed 4-NTP by NaBH4 to 4,4′-DMAB,
and thus to 4-ATP.
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onto the surface of Au [49]. Hence, the hydrogenation
of 4-NTP was initiated once the concentration of surface
hydrogen species reached a threshold. As the reaction pro-
ceeded, the peaks of 4-NTP (856 cm−1, 1112 cm−1, 1347 cm−1

and 1517 cm−1) decreased gradually, associated with steady
depletion of −NO2 groups. Concurrently, a vibrational band of
some intermediate species emerged along the reaction pathway
at 1386 cm−1, which can be attributed to N=N stretching in
4,4′-DMAB. As reaction time increased, the intensity of SERS
signals of 4,4′-DMAB intermediate first increased (from 2min
to 5min), then decreased (from 5min to 10min), and finally
disappeared thereafter as shown in figure 7. Accompanied with
the diminishing intensity of the vibrational bands of 4-NTP and
4,4′-DMAB are the increasing peak intensity at 1597 cm−1 and
the emergence of an additional band at 1490 cm−1. These two
bands correspond to phenyl ring mode [50] and aniline derivate
(R-NH2) [51], respectively, from 4-ATP, indicating the forma-
tion of 4-ATP as a reduction product. The time-resolved
tracking of the disappearance of 4-NTP, emergence and dis-
appearance of 4,4′-DMAB, and appearance of 4-ATP shown in
figure 7 demonstrates the usefulness of the AOA for in situ
monitoring of catalytic chemical reactions. As shown in figure
S5, three sets of experimental results of SERS measurements
for the chemical reaction demonstrated the replicability. Table
S2 provides a summary of reported catalytic reaction regarding
4-NTP to 4-ATP by NaBH4 through the two-step pathway on
Ag/Au based platforms.

4. Conclusion

We used a facile method to fabricate AOA nanostructures on
a silicon substrate. The TED technique employed to deposit
thin Au film on Ag NPs overcomes the challenges associated
with solution-based bimetal nanostructure synthesis due to
galvanic replacement reactions. AOA is chemically stable in
highly oxidative H2O2 solutions. It exhibits SERS EF that is
∼37 times higher than that of Au NPs. The concave-convex
topography of Au thin film on immobilized Ag NPs possesses
significant catalytic activity. The dual functionality of the
AOA, i.e., SERS and catalytic activities, has enabled SERS-
based monitoring of the catalytic reduction process of 4-NTP
to 4-ATP by NaBH4 in real-time and in situ. This invest-
igation demonstrates that highly functional nanostructures can
be fabricated using an easy-to-implement and scalable
method. The unique properties of such nanostructures can be
utilized synergistically to study the kinetics and mechanisms
of catalytic reactions, including reaction pathways.
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