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A B S T R A C T

We investigate the quantum transport dynamics of electrons in a multi-path Aharonov–Bohm interferometer
comprising several parallel graphene nanoribbons. At low magnetic field strengths, the conductance displays a
complex oscillatory behavior stemming from the interference of electron wave functions from different paths,
reminiscent of the diffraction grating in optics. With increasing magnetic field strength, certain nanoribbons
experience transport blockade, leading to conventional Aharonov–Bohm oscillations arising from two-path
interference. We also discuss the impact of edge effects and the influence of finite temperature. Our findings
offer valuable insights for experimental investigations of quantum transport in multi-path devices and their
potential application for interferometry and quantum sensing.
1. Introduction

Graphene is a compelling contender for next-generation compact
and high-performance electronic devices due to its exceptional prop-
erties, including the atomically thin monolayer structure, linear dis-
persion relation near the Dirac points, absence of energy gap, and
high carrier mobility [1,2]. These properties have enabled a myriad
of innovative applications ranging from ultrafast electronics and flexi-
ble optoelectronics to advanced sensing technologies. Recent research
has also unveiled graphene’s potential as a versatile playground for
exploring intriguing quantum interference phenomena similar to those
observed in optics, yet operating on the nanoscale with matter waves.
Notable examples of electron optics with graphene include the real-
ization of Fabry–Pérot interferometers, Mach–Zehnder interferometers,
and Veselago lens, which have paved the way for fabricating chip-scale
electronic interferometers [3–5].

The Aharonov–Bohm (AB) effect is a quintessential example of
quantum interference that has garnered substantial attention across
various materials systems, including metals [6], semiconductor het-
erostructures [7], carbon nanotubes [8], and topological insulators [9–
12]. It arises from the interference of wave functions of charged par-
ticles encircling a ring structure in the presence of a perpendicular
magnetic field. Due to the presence of magnetic flux, charged particles
pick up a different phase 𝛥𝜑 = 2𝜋𝐵𝑆∕𝜙0 when traversing along
the two paths where 𝜙0 = ℎ∕𝑒 denotes the flux quantum, 𝑆 is the
area enclosed by the ring, 𝐵 is the strength of the applied perpen-
dicular magnetic field [13] . Consequently, by varying the magnetic
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field, the conductance exhibits a periodic oscillation with an oscil-
lation frequency given by 𝑓𝐵 = 𝑆∕𝜙0. AB oscillations have been
observed in various graphene materials, including mechanically exfoli-
ated graphene [14–18], epitaxial graphene [19], CVD graphene [20,
21], exfoliated bilayer graphene [22,23]. However, most investiga-
tions have focused on two-path interferometry setups, which inherently
limit the complexity of achievable interference patterns [24–27]. The
natural question is, what happens when considering a multi-path in-
terferometer involving interconnected quantum pathways? Despite its
conceptual importance and simplicity, multi-path AB oscillations have
been relatively underexplored in the literature.

Here, we systematically investigate quantum transport in a multi-
path AB interferometer comprising several parallel graphene nanorib-
bons (GNRs). We found that the magnetoconductance exhibits complex
oscillatory behavior due to the intricate interplay between electron
trajectories, magnetic flux, and the quantum Hall effect. When the
magnetic field is weak, electrons can be transported from source to
drain through all pathways, giving rise to AB interference reminis-
cent of the diffraction grating effect in optics. As the magnetic field
increases, the bulk current evolves into chiral edge states due to the
quantum Hall effect, resulting in unidirectional flow and the obstruc-
tion of specific pathways. In this regime, we demonstrate a dramatic
change in the AB oscillation that evolves from multi-path to two-path
interference. Our results showcase the complexity achievable in multi-
path interferometers and offer new avenues for harnessing the potential
of graphene-based systems for quantum-enhanced technologies.
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Fig. 1. Schematic illustration of our GNR rings subjected to a uniform magnetic field along the perpendicular direction with (a) two paths, (b) three paths, and (c) four paths.
The length is denoted as 𝐿 = 500 nm, the width of the lead is 𝑊𝐿 = 300 nm, and the width of the ring arm is 𝑊 = 40 nm. The ring arms have the same width and enclose the
same total area. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
2. Quantum transport at 𝑻 = 𝟎

The carbon atoms of graphene arrange themselves in a 2D honey-
comb lattice, with two atoms per unit cell, giving rise to remarkable
properties and behaviors of graphene. To compute the electronic trans-
port in GNR rings we employ the following spinless nearest-neighbor
tight-binding model [2]

𝐻 =
∑

𝑖
𝜖𝑖𝑐

†
𝑖 𝑐𝑖 +

∑

⟨𝑖,𝑗⟩
𝑡𝑖𝑗 (𝑐

†
𝑖 𝑐𝑗 + ℎ.𝑐.) (1)

where 𝑐†𝑖 (𝑐𝑖) represents the creation (annihilation) operator for an
electron at the 𝑖th lattice site, with an associated on-site potential
energy 𝜖𝑖 which we have set to zero in this work. The summation
∑

⟨𝑖,𝑗⟩ is limited to the nearest-neighbor atoms on the honeycomb lattice
with a lattice constant of 𝑎0 = 0.246 nm. Under the influence of a
uniform perpendicular magnetic field 𝐁 = (0, 0, 𝐵), the tight-binding
Hamiltonian 𝐻 is modified through the Peierls substitution [28]

𝑡𝑖𝑗 = 𝑡0𝑒
−𝑖 2𝜋𝜙0

∫
𝐫𝑗
𝐫𝑖 𝐀(𝐫)⋅𝑑𝐫 (2)

where 𝑡0 ≈ 2.7 eV is the hopping parameter and 𝐀 is the gauge
field specifically in the Landau gauge as 𝐀 = (−𝐵𝑦, 0, 0). To enhance
computational efficiency, we employ a scaling factor of 𝑠 = 5 with the
hopping parameter rescaled to 𝑡 = 𝑡0∕𝑠 and lattice spacing 𝑎 = 𝑎0𝑠 [29].
At zero temperature the conductance is calculated using the Landauer
formula 𝐺 = (𝑒2∕ℎ)

∑

𝛼𝛽 ∣ 𝑡𝛼𝛽 ∣2 with 𝑡𝛼𝛽 representing the probability
amplitude for the transmission from mode 𝛽 in the input lead to mode
𝛼 in the output lead. In this work, we employ the Kwant package to
numerically simulate the quantum transport dynamics of the multi-path
graphene system [30].

Fig. 1 depicts a parallel zigzag GNR ring with multiple paths for
electron matter wave interference. Fig. 1(a) displays the configuration
with two paths, which we will refer to as a 2slits system. Furthermore,
we introduce a third and fourth pathway, yielding a 3slits system
(Fig. 1(b)) and a 4slits system (Fig. 1(c)). Two semi-infinite leads,
indicated in red, are symmetrically attached to each end of the ribbon.
The dimensions of the rectangular zigzag GNR are defined by the
parameters displayed in Fig. 1(a).

In Fig. 2(a), we present the band structure of the lead (which is
the same for the three configurations) with a zigzag edge at 𝐵 =
0T. Only the lowest three conduction subbands are shown as they
are relevant to the quantum transport dynamics. The corresponding
transmission probability for the 3slits system is depicted in Fig. 2(b).
Within the low-energy regime, corresponding to the first subband,
a distinct transmission probability pattern, characterized by periodic
oscillations of varying amplitudes, emerges. This pattern diminishes as
the Fermi energy is increased to cross the second subband. Upon further
increase in the Fermi energy, the transmission probability demonstrates
regular oscillations similar to those observed in the 2slits system. An
interesting phenomenon happens at B = 1.5 T. In this scenario, the
oscillatory pattern exhibited at low Fermi energies undergoes a process
of smearing out and suppression as the Fermi energy increases. At
higher Fermi energies, multiple sub-bands contribute to the transport
2

Fig. 2. (a) Band structure of the lead and (b, c) the corresponding transmission
probability of the 3slits system at 𝐵 = 0T and 𝐵 = 1.5T, respectively.

dynamics of electrons, leading to interference patterns becoming less
pronounced or even smeared out. In the following, we shall focus on
the low Fermi energy regime.

In Fig. 3, the conductance 𝐺 is presented as a function of the
magnetic field 𝐵 for nanoribbon rings. The conductance plot in Fig. 3(a)
for the 2slits system exhibits regular oscillations that arise from the
two-path AB effect. The oscillation period 𝛥𝐵 is approximately 34.5
mT, in excellent agreement with the theoretical expression 𝜙0∕𝑆 where
𝑆 ≈ 𝐿 ×𝑊𝐿. The conductance plots in Fig. 3(b, c) exhibit notable and
distinctive features. In the case of the 3slits configuration, two types
of oscillation patterns are observed. Within the yellow-shaded region,
the amplitudes of the conductance oscillation exhibit an alternating
trend, where they undergo systematic increments and decrements as
a function of the magnetic field strength. This behavior is prominent
for very small values of B. However, as the magnetic field strength
increases beyond a certain threshold, which depends on the Fermi
energy 𝐸𝐹 of the incident electron, a regular oscillation pattern emerges
(indicated by the purple-shaded region), corresponding to the behavior
observed in the 2slits system. For the 4-slits system, three types of
oscillation patterns can be identified, as indicated by the three different
colors in Fig. 3(c). The conductance clearly consists of three oscillation
frequencies at a very low magnetic field. As the magnetic field strength
is increased, the behavior evolves into that for the 3slits and 2slits
systems, respectively.

To quantitatively analyze the complex magnetoconductance oscilla-
tions presented in Fig. 3, we have performed a fast Fourier transform
(FFT). As shown in Fig. 4(a), the conductance oscillations for the 2slits
system exhibit a prominent peak at a frequency of 30/T, which agrees
with the conventional AB oscillations arising from electron matter wave
interference along the two pathways. Higher harmonics, such as the
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Fig. 3. Conductance 𝐺 as a function of the magnetic field 𝐵 for Fermi energies 𝐸𝐹 = 0.1
meV (solid line) and 𝐸𝐹 = 2 meV (dashed line) at temperature 𝑇 = 0 for the GNR rings
with (a) 2 slits, (b) 3 slits, and (c) 4 slits. The purple-shaded area corresponds to
interference between two paths, the yellow-shaded area corresponds to interference
between three paths, and the red-shaded area corresponds to interference between
four paths. The curves for 𝐸𝐹 = 2 meV have been shifted by 1𝑒2∕ℎ for improved
visualization. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

peak at around 60/T, are also visible. For the 3slits system, in addition
to the 30/T frequency component, other frequencies emerge, with the
one at 15/T dominating. This suggests that the magnetoconductance
oscillation of the 3slits system (Fig. 3(b)) results from two types of inter-
ference: one between neighboring slits, resulting in slower oscillations
at 15/T, and the other between the top and bottom slits, yielding faster
oscillations at 30/T. The latter frequency component diminishes at rel-
atively higher magnetic field strengths (indicated by the purple-shaded
area in Fig. 3(b)), implying that either the top or bottom slit becomes
insulating. Similarly, in Fig. 3(c), three distinct frequency components
emerge at (i) 10/T, (ii) 20/T, and (iii) 30/T, correspondingly to inter-
ference between electron matter waves (i) among neighboring slits, (ii)
among the next nearest-neighboring slits, and (iii) between the top and
bottom slits, respectively. The evolving oscillations in Fig. 3(c) indicate
that one, and subsequently two, pathways of the 4slits system become
insulating under intermediate and strong magnetic field strengths.

To gain further insight into the conductance behavior in Fig. 3, we
examine the current flow of the whole system under various magnetic
field strengths. The current between two sites is defined as [25,31]

𝐽𝑖𝑗 = 𝑖
∑

𝛼
(𝜓∗

𝛼𝑖𝑡𝑖𝑗𝜓𝛼𝑗 − 𝜓
∗
𝛼𝑗 𝑡𝑖𝑗𝜓𝛼𝑖) (3)

where 𝜓𝛼𝑖 is the wave function at the 𝑖th site, and 𝛼 denotes the index of
the conducting channels of the two leads, spanning all available energy
modes up to the Fermi energy 𝐸𝐹 .

Fig. 5 presents the current flow distribution at four different mag-
netic field strengths, corresponding to the four points denoted as
I, II, III, and IV of the 3slits magnetoconductance oscillation curve
(Fig. 5(a)), respectively. At 𝐵 = 0T, the currents in the three pathways
flow in the same direction, giving rise to the maximum flow of current
and the highest conductance amplitude (Fig. 5(b)). In analogy to the
3

Fig. 4. Fourier transform of the magnetoconductance oscillations shown in Fig. 3, with
blue, yellow, and red vertical lines indicating the frequencies resulting from interference
between the top and bottom slits, neighboring slit (b) and next nearest-neighboring slits
(c), and neighboring slits, respectively. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Fig. 5. (a) Conductance G as a function of the magnetic field B for the 3slit
configuration at 𝐸𝐹 = 2 meV. The corresponding current distributions are illustrated in
(b–e), each associated with distinct magnetic field strength. Electrons enter the ribbon
from the left lead. Darker blue shades depict lower current density with narrower
streamlines, while brighter yellow hues represent higher current density with wider
streamlines. This interplay of streamlines and colors visually illustrates flow speed and
current distribution within the system. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

optical grating effect, this scenario corresponds to the constructive
interference of electron matter waves along the three paths. At 𝐵 =
0.022T, the current flows to the right lead via the top pathway and
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Fig. 6. Contour plot of the conductance (in unit of 𝑒2∕ℎ) as a function of the
Fermi energy 𝐸 and the magnetic field strength 𝐵 for the (a) 2slits and (b) 3slits
configurations.

returns back through the two lower pathways, leading to a minimal net
current and vanishing conductance (Fig. 5(c)). This corresponds to the
destructive interference of the electron matter waves along the three
paths. At 𝐵 = 0.032T, as the Peierls phase continues to accumulate,
the current in the lowest path is reversed again, leading to partial
constructive interference among the three paths and finite conductance
(Fig. 5(d)). As the magnetic field increases, the grating effect gradually
fades out, and the current along the top pathway is blocked (Fig. 5(e)).
This is related to the formation of Landau levels and the associated
chiral edge state that flows along the lower part of the GNR. When
the magnetic field is increased to even larger values, the middle slit
will also be blocked due to the further localization of the edge state.
Therefore, one potential application of the multi-slit system is the
detection of a relatively large magnetic field (or higher rotation angular
velocity for a graphene gyroscope). With the same enclosing area, the
interference in a two-slit system will be disabled due to the blockade
effect while the oscillation persists in the three or multi-slit systems.

Fig. 6 shows a contour plot of the conductance as a function of Fermi
energy and magnetic field strength. In the case of the 2slits system, the
conductance displays pronounced AB oscillation, with a frequency that
is largely unaffected by changes in Fermi energy. This phenomenon
arises from our choice of Fermi energies near the Dirac point. When
we vary the Fermi energy while keeping the magnetic field constant,
the conductance of the 2slits system exhibits additional oscillations.
These oscillations are attributed to the resonant tunneling through the
bound states within the GNR, a consequence of confinement along the
longitudinal direction. In contrast, the 3slits system exhibits a more
complex oscillatory pattern owing to the multi-path interference effects.
A diffraction grating effect is evident across a wide spectrum of Fermi
energies.

In our previous analysis, we explored the GNR with a zigzag edge, as
depicted in Fig. 1. To provide a comprehensive study, Fig. 7 showcases
the conductance plot and its FFT for the armchair edge configuration.
4

Fig. 7. (a) Conductance as a function of the magnetic field for armchair GNR rings
in the setup depicted in Fig. 1 and (b) the corresponding Fourier spectrum for Fermi
energies 𝐸𝐹 = 2.5 meV. The curves in (a) have been shifted by 1𝑒2∕ℎ for improved
visualization.

Fig. 7(a) presents the conductance plotted against the magnetic field
for the same three configurations. Different from that for the systems
with zigzag edges, the conductance is small at low magnetic fields and
gradually increases to 1𝑒2∕ℎ at higher B. This phenomenon is related to
the distinct band structures of the GNRs. Specifically, GNRs with zigzag
edges are characterized as gapless due to the presence of a zero-energy
edge state, while those with armchair edges possess a finite energy gap
and our choice of Fermi energy is lower than this energy gap. As B
increases, the lowest conductance band will become lower and flatter
to form the Landau levels. Consequently, the conductance gradually
increases as a function of B. In contrast to the case with the zigzag
edge, the oscillation pattern displayed in the 3slits and 4slits extends
to a wider range of magnetic fields, demonstrating the robustness of
this phenomenon. The corresponding Fourier spectrum in Fig. 7(b) also
reveals the presence of higher harmonics.

3. Influence of temperature

Extending our analysis to finite temperatures is essential to gain
a comprehensive understanding of the multi-path quantum transport
dynamics under realistic conditions. This investigation is particularly
pertinent to practical applications of graphene-based devices, which
often operate at nonzero temperatures.

To incorporate finite temperature effects, we need to integrate the
product of the transmission and broadening function over an energy
window (𝐸𝐹 ±15𝑘𝐵𝑇 ), with 𝑘𝐵𝑇 representing the thermal energy [32]:

𝐺(𝐵,𝐸𝐹 , 𝑇 ) =
𝑒2

ℎ ∫ 𝑇 (𝐸,𝐵)𝐹𝑇 (𝐸 − 𝐸𝐹 )𝑑𝐸 (4)

where 𝐹𝑇 (𝐸−𝐸𝐹 ) = −
𝜕𝑓𝐸𝐹 (𝐸)
𝜕𝐸 denotes the thermal broadening function

and 𝑓𝐸𝐹 (𝐸) = [1 + 𝑒(𝐸−𝐸𝐹 )∕𝑘𝐵𝑇 ]−1 is the Fermi–Dirac distribution
function. In standard cryogenic experiments, a temperature of 4 K
corresponds to a thermal energy of approximately 0.3 meV, providing
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Fig. 8. (a) and (c) display the Fourier transforms for the 2slits and 3slits systems,
respectively, calculated at finite temperatures ranging from 0.3 K to 4 K, with 𝐸𝐹 =
0.1 meV. The integrated amplitudes of the FFT peaks as functions of temperature are
presented in (b) and (d) for the corresponding systems. Specifically, for the 2slits
system, (b) displays the integrated amplitude of the peak at 30/T, with the integral
in the frequency domain ranging from (25 − 35)∕𝑇 . In contrast, for the 3slits system,
(d) illustrates the integrated amplitudes at 15/T and 30/T, with the integral ranges of
(10 − 20)∕𝑇 and (25 − 35)∕𝑇 , respectively.

a useful reference for understanding the energy scales involved in low-
temperature simulations. In the calculation, we fix the Fermi energy
at 0.1 meV, and vary the temperature across the range from 0 K to
4 K. As shown in Fig. 8(a,c), the integrated amplitude of the FFT
peaks at 30/T reduces for both the 2slits and 3slits configurations. In
contrast, the FFT peaks at 15/T do not decrease monotonously for the
3slits configuration. The peaks at 15/T may be enhanced at 0.3 K. This
nontrivial temperature effect is related to the interference of electron
matter waves among nearest neighbor paths in the 3slits configuration.
Additionally, the peak values at 15/T (without integration) are usually
larger than those at 30/T, despite being narrower.

4. Conclusion

In summary, we have systematically studied the quantum trans-
port dynamics of electrons within a multi-path AB interferometer con-
structed from parallel graphene nanoribbons. We unveil intriguing
oscillatory behavior in conductance at low magnetic field strengths,
reminiscent of the diffraction grating effect in optics, underscoring
the interplay between electron trajectories, magnetic flux, and the
quantum Hall effect. With increasing magnetic fields, certain pathways
are blocked, and the system evolves into a two-path interferometer
due to the formation of Landau levels and the associated chiral edge
states. One important generalization of our work is to include the
disorders that are always present in the real material. Disorders can
affect the coherence length, mean-free length, and, subsequently, the
phenomena of multi-path interference. Furthermore, our exploration
can be expanded to encompass spin–orbit coupling in the tight-binding
model and applied to other 2D materials. Our findings hold promise
for the advancement of interferometry and quantum sensing technolo-
gies. They are poised to stimulate further theoretical and experimental
5

investigations of multi-path interference with electronic matter waves.
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